Predicting Students' Performance Using ID3 And C4.5 Classification Algorithms
نویسندگان
چکیده
An educational institution needs to have an approximate prior knowledge of enrolled students to predict their performance in future academics. This helps them to identify promising students and also provides them an opportunity to pay attention to and improve those who would probably get lower grades. As a solution, we have developed a system which can predict the performance of students from their previous performances using concepts of data mining techniques under Classification. We have analyzed the data set containing information about students, such as gender, marks scored in the board examinations of classes X and XII, marks and rank in entrance examinations and results in first year of the previous batch of students. By applying the ID3 (Iterative Dichotomiser 3) and C4.5 classification algorithms on this data, we have predicted the general and individual performance of freshly admitted students in future examinations.
منابع مشابه
S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملData Mining: A Prediction for Performance Improvement of Engineering Students using Classification
Now-a-days the amount of data stored in educational database increasing rapidly. These databases contain hidden information for improvement of students’ performance. Educational data mining is used to study the data available in the educational field and bring out the hidden knowledge from it. Classification methods like decision trees, Bayesian network etc can be applied on the educational dat...
متن کاملComparison of Feature Selection and Classification Algorithms for Restaurant Dataset Classification
Currently, the rapid growth of information on the Internet makes automatic text classification play an important role to help people discovering desired information on enormous resources. Text mining, feature selection and classification algorithm have effect on the classification performance directly. In this paper, the comparative study of the text classification performance is proposed. It c...
متن کاملA comparative study of decision tree ID3 and C4.5
Data mining is the useful tool to discovering the knowledge from large data. Different methods & algorithms are available in data mining. Classification is most common method used for finding the mine rule from the large database. Decision tree method generally used for the Classification, because it is the simple hierarchical structure for the user understanding & decision making. Various data...
متن کاملPattern Extraction, Classification and Comparison Between Attribute Selection Measures
In this research, we have compared three different attribute selection measures algorithms. We have used ID3 algorithm, C4.5 algorithm and CART algorithm. All these algorithms are decision tree based algorithm. We have got the accuracy of three different algorithms and we observed that the accuracy of ID3 algorithm is greater than C4.5 algorithm. But the accuracy of CART algorithm is greater th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1310.2071 شماره
صفحات -
تاریخ انتشار 2013